Data preprocessing and integration for reproducible multiomic biomarker discovery and validation

W. Evan Johnson

Division of Computational Biomedicine Boston University School of Medicine wej@bu.edu

> http://jlab.bu.edu/ @wejlab

April 29, 2013

- Carefully designed study (begin with end in mind):
 - Targeted data collection
 - Include 'orthogonal' data types

- Carefully designed study (begin with end in mind):
 - Targeted data collection
 - Include 'orthogonal' data types
- Robust development of reproducible biomarker:
 - Data preprocessing and integration
 - Discovery, development, optimization (and adaptation!)

- Carefully designed study (begin with end in mind):
 - Targeted data collection
 - Include 'orthogonal' data types
- 2 Robust development of reproducible biomarker:
 - Data preprocessing and integration
 - Discovery, development, optimization (and adaptation!)
- Validation types (predefined if possible):
 - Internal and external validation
 - Mechanistic or functional validation
 - Additional genomic profiling?

- Carefully designed study (begin with end in mind):
 - Targeted data collection
 - Include 'orthogonal' data types
- 2 Robust development of reproducible biomarker:
 - Data preprocessing and integration
 - Discovery, development, optimization (and adaptation!)
- Validation types (predefined if possible):
 - Internal and external validation
 - Mechanistic or functional validation
 - Additional genomic profiling?
- 4 Last but not least: Transparency!

Breast Cancer Often Runs in Families

Breast Cancer

Familial Breast Cancer

Risk Subpopulations

No Cancer Cancer

Predicting Hereditary Breast Cancer

Goal: Develop a non-invasive biomarker for hereditary breast cancer risk

Key hypotheses or information to build our biomarker:

- Rare or highly penetrant genetic variation impacting key pathways (e.g. DNA repair)
- Germline-driven mRNA degregulation as an intermediate risk phenotype for familial breast-cancer susceptibility
- Expression patterns in peripheral blood will enable prospective identification of high-risk women who will develop breast cancer

RNA Expression as a Variation Surrogate

Microarray Profiles of Peripheral Blood

Patient Cohorts

Location	Туре	Patients
Utah	Retrospective	124
Ontario	Retrospective	36
Ontario	Prospective	37

Study Design Summary

Important elements of the study design:

- Study patients recruited and data collected specifically for this study
- Validation on a heterogenous population/dataset
- Clear purpose for the study and 'success' is predefined
- Collected expression array and DNA sequencing data (validation? multi-omic biomarker?)

Goals of Personalized Genomic Medicine

4□ > 4□ > 4□ > 4□ > 4□ > 900

7 / 25

Data Normalization Methods

Microarray/Sequencing Normalization Methods

- Multisample Methods:
 - dChip (Li, PNAS, 2001)
 - QQ/RMA (Bolstad, Bioinformatics, 2003; Irizarry, Biostatistics, 2003)
 - RNA-seq: Conditional-QQ (Hansen, Biostatistics, 2012)
- Single Sample Methods:
 - MAS5 (Hubbell, Bioinformatics, 2002)
 - fRMA (McCall, Biostatistics, 2010)
 - Barcoding (Irizarry Nat Meth 2009; McCall, NAR, 2012)
 - RPKM/FPKM (Mortazavi, Nat Meth, 2008; Trapnell, Nat Biotech 2010)
- Single Array and Sequencing Integrative Methods:
 - SCAN-UPC (Piccolo, Genomics, 2012)

SCAN-UPC: Single Sample of Expression Estimates

Our approaches: Single Channel Array Normalization (SCAN), and Universal Probability of Expression Codes (UPC)

- Uses background within a single sample
- Individual patient samples without any extraneous data
- Can be applied to all platforms: one and two color arrays, RNA-seq (UPC)
- Naturally combines data across platforms (UPC)

Biomarker and Personalized Medicine Workflows

SCAN-UPC: Single Sample of Expression Estimates

Two Component Gassian Mixture Model

SCAN-UPC Model Justification:

For Affymetrix arrays:

• Each component is $N(X\theta_m, \sigma_m^2)$ (m = 1, 2), where

$$x_i \theta_m = \alpha_m n_{iT} + \sum_{j=1}^{25} \sum_{k \in \{A,C,G\}} \beta_{jkm} I_{ijk} + \sum_{l \in \{A,C,G,T\}} \gamma_{lm} n_{ik}^2,$$

(Johnson et al., PNAS, 2006)

Batch and Design Effects

RMA

SCAN → Consistent Across Array Designs

Single Channel Array Normalization (SCAN)

For two-color arrays:

Suppose

$$\log(\mathbf{Y_i}) = (\log(Y_{i1}), \log(Y_{i2})) \sim N(\mathbf{m_k}, \Sigma_k)$$

where k is the G+C of the probe

Transform to mean center and remove chip and dye effects:

$$\mathbf{Z_i} = \hat{\Sigma}_k^{-1/2} (\log(\mathbf{Y_i}) - \hat{\mathbf{m}}_k)$$

(Song et al., Genome Biology, 2007)

Apply a simple two-component mixture model

- 4 □ b 4 個 b 4 直 b 4 直 b 9 Q (?)

RNA-seq data:

- Mapping errors, repetitive regions
- 'Leaky' transcription
- Each component is $N(X\theta_m, \sigma_m^2)$, where

$$x_i\theta_m = \alpha_m + GC_i\beta + Len_i\gamma$$

RNA-Seq Data:

(a) Normalized Array, Read Count

(c) UPC Array and Seq

(b) Normalized Array, RPKM

(c) UPC Array and Seq

Active and Inactive Genes Across Platforms

Microarray active or RNA-Seq inactive subset: 98.7% correspondence across platforms Discordant due to increased sensitivity of RNA-Seq

Risk Prediction

Utah – Predicted Risk

Utah — ROC Curve

Ontario – Predicted Risk

Ontario — ROC Curve

Top Pathway Results

Pathway	AUC	Controls Mutated	Cancer Mutated
Integrin cell surface interactions	0.687	3/16	9/19
Cell adhesion molecules	0.682	2/16	8/19
PI3K Signaling System	0.676	4/16	10/19
Citrate/Krebs cycle	0.678	0/16	7/19
Fructose and mannose metabolism	0.668	1/16	7/19
ERBB signaling pathway	0.658	3/16	7/19

Pathways that performed well in both analyses are known to play a role in tumor development!

Integrin cell-surface interactions

Epithelial Tissue Adhesion

Functional Results

Acknowledgements

SCAN-UPC

Stephen Piccolo, PhD

Owen Francis

Michelle Withers

Andrea Bild. PhD

Ying Sun

Marc Lenburg

Josh Campbell

Breast Cancer Research Team:

Andrea Bild, PhD

Stephen Piccolo, PhD

Saundra Buys, MD

Theresa Werner, MD

Tom Conner

David Goldgar, PhD

Avi Spira, MD

Irene Andrulis. PhD

Funding:

NIH U01 CA164720 NIH R01 HG005692

Thank-you!